

Tikrit University Electrical Engineering Department

EE-317 Computer Engineering 2024-2025

Arithmetic: Floating Point Operations

Jalal Nazar Abdulbaqi, Ph.D.

jalal.abdulbaqi@tu.edu.iq

Outline

- Arithmetic on Floating Point
 - Addition
 - Multiplication

Floating-Point <u>Addition</u> Example

 Example: 4-digit <u>Decimal</u> 	9.999 × 10 ¹ + 1.610 × 10 ⁻¹
 Align decimal points → Shift number with smaller exponent 	9.999 × 10 ¹ + 0.016 × 10 ¹
2 . Add significands	9.999 × 10 ¹ + 0.016 × 10 ¹ = 10.015 × 10 ¹
 Normalize result & check for over/underflow 	1 .0015 × 10 ²
4. Round and renormalize if necessary	1.002×10^{2}

Floating-Point Addition Example

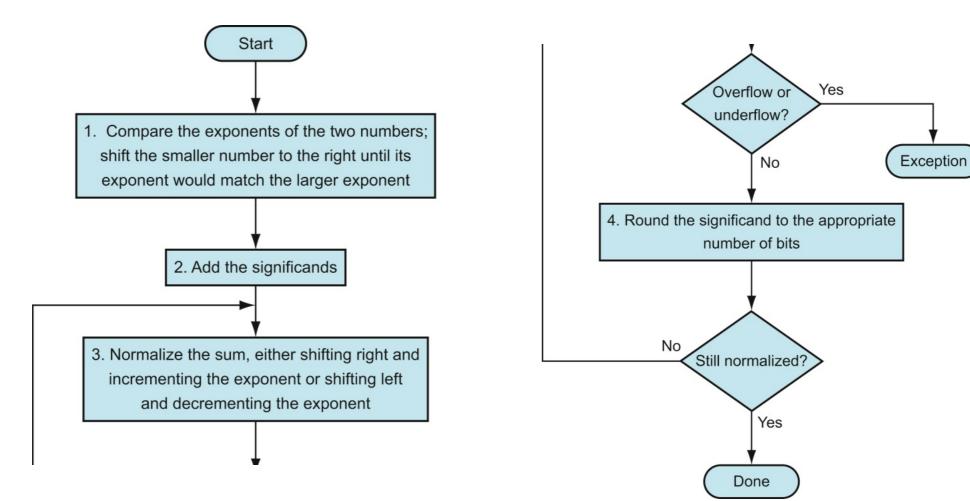
 Example: 4-digit <u>Binary</u> 	$1.000_{two} \times 2^{-1} + -1.110_{two} \times 2^{-2}$ $(0.5_{ten} + -0.4375_{ten})$
 Align decimal points → Shift number with smaller exponent 	1.000 _{two} × 2 ⁻¹ + - 0.111_{two} × 2⁻¹
2. Add significands	$1.000_{two} \times 2^{-1} + -0.111_{two} \times 2^{-1} = 0.001_{two} \times 2^{-1}$
 Normalize result & check for over/underflow 	1.000 _{two} × 2 ⁻⁴
4. Round and renormalize if necessary	1.000 _{two} × 2 ⁻⁴ (no change) = 0.0625 _{ten}

Arithmetic

Floating-Point Addition Algorithm

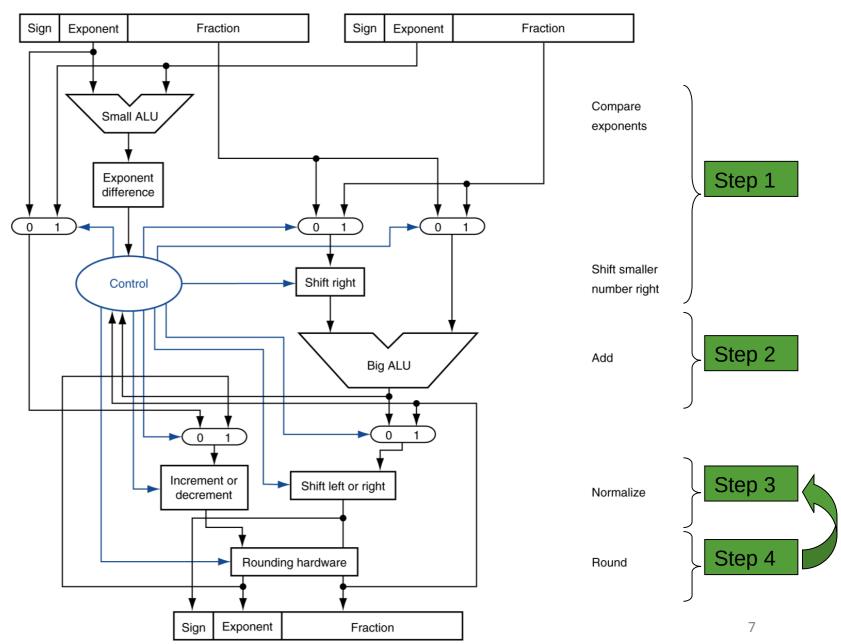
- the binary point has to be aligned this means that the significand of the *smaller number* is shifted to the right until the decimal points are aligned.
- 2. then the addition of the significand takes place
- 3. the result needs to be *normalized*, which means the binary point is shifted left and exponent increases.
- 4. the result needs to be *truncated* to available number of digits and rounded off (add 1 to the last available digit if number to the right is 5 or larger)

Floating-Point Addition Algorithm



Arithmetic

Floating-Point Adder Hardware



Floating-Point Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- Floating-Point adder usually takes several cycles
 - Can be pipelined

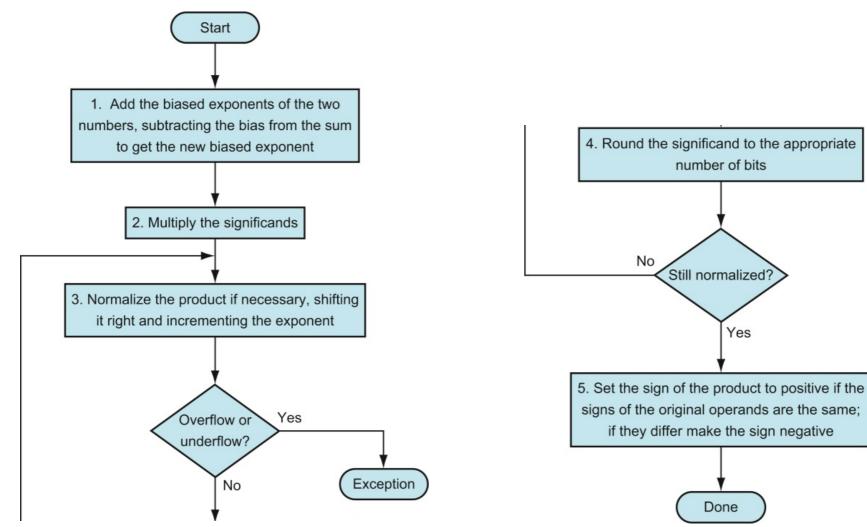
Arithmetic Floating-Point <u>Multiplication</u> Example

• Example: 4-digit Decimal	$1.110 \times 10^{10} \times 9.200 \times 10^{-5}$		
 1. Add exponents → For biased exponents, subtract bias from sum 	10 + -5 = 5		
2 . Multiply significands	$1.110 \times 9.200 = 10.212$ \Rightarrow 10.212 × 10 ⁵		
 Normalize result & check for over/underflow 	1 .0212 × 10 ⁶		
 Round and renormalize if necessary 	1. 021 × 10 ⁶		
 Determine sign of result from signs of operands 	+1.021 × 10 ⁶		

Arithmetic Floating-Point Multiplication Example

 Example: 4-digit <u>Binary</u> 	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
 Add exponents → For biased exponents, subtract bias from sum 	Unbiased: $-1 + -2 = -3$ Biased: $(-1 + 127) + (-2 + 127)$ = -3 + 254 - 127 = -3 + 127
2 . Multiply significands	$1.000_{two} \times 1.110_{two} = 1.110_{two}$ $\Rightarrow 1.110_{two} \times 2^{-3}$
 Normalize result & check for over/underflow 	1.110 _{two} × 2 ⁻³ (no change)
 Round and renormalize if necessary 	1.110 _{two} × 2 ⁻³ (no change)
 Determine sign of result from signs of operands 	$ \begin{array}{c} -1.110_{two} \times 2^{-3} \\ = -0.21875_{ten} \\ \end{array} $ 10

Floating-Point Multiplication Algorithm



FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, squareroot
 - FP \leftrightarrow integer conversion
- Operations usually takes several cycles
 - Can be pipelined

Arithmetic Arithmetic

- During the preceding examples, arithmetic operations results can have larger number of digits than what the registers can hold, therefore,
- IEEE 754 always keeps **two** extra bits on the right called guard and round.
- Values 00-49 \rightarrow round down, while 51-99 \rightarrow round up
- if values $50 \rightarrow$ extra bit (sticky bit) is set to 1 if there are nonzero bits to the right of the round bit

Arithmetic

Accurate Arithmetic

IEEE 754 has four rounding modes:

- 1.always round up (toward $+\infty$),
- 2.always round down (toward $-\infty$),
- 3.truncate, and
- 4.round to nearest even.

"Round to nearest even" determines what to do if the number is exactly halfway in between. IEEE 754 says that if the least significant bit (LSB) retained in a halfway case would be odd, add one; if it's even, truncate. In other words, choose the nearest even number.

Arithmetic Accurate Arithmetic

Example #1: round the following binary numbers to the nearest two bits fraction:

- **0.11**101 \rightarrow 1.00 (round up)
- **0.11**011 → 0.11 (round down)

0.11100 \rightarrow **tie-breaking case**, the number in the halfway case

 \rightarrow round to nearest even

round **up**: 1.00 (Even)

round **down**: 0.11 (Odd)

then we round **up** (1.00) because it is **even**.

Arithmetic Accurate Arithmetic

Example #2: round the following binary numbers to the nearest two bits fraction:

0.10101 → 0.11 (round up)

0.10011 → 0.10 (round down)

0.10100 \rightarrow **tie-breaking case**, the number in the halfway case

 \rightarrow round to nearest even

round **up**: 0.11 (Odd)

round down: 0.10 (Even)

then we round **down** (0.10) because it is even.

Accurate Arithmetic – Example 1

ОР	3-digit significant	Guard	Round	Sticky
	$8.76 \times 10^{1} + 1.47 \times 10^{2}$	0	0	0
Align	$0.876 \times 10^2 + 1.47 \times 10^2$	6	0	0
Add	2.34 <mark>60 × 10²</mark>	6	0	0
Norm	2.34 <mark>60 × 10²</mark>	6	0	0
Round	2.3 5 × 10 ²	0	0	0

Accurate Arithmetic – Example 2

ОР	3-digit significant	Guard	Round	Sticky
	$5.01 \times 10^{-1} + 1.34 \times 10^{2}$	0	0	0
Align	$0.0050100 \times 10^2 + 1.34 \times 10^2$	5	0	1
Add	1.34 <mark>50 ×</mark> 10 ²	5	0	1
Norm	1.3450×10^{2}	5	0	1
Round	1.3 5 × 10 ²	0	0	0

FP Instructions in RISC-V

- Separate FP registers: **f0**, ..., **f31**
 - double-precision
 - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - flw, fld
 - •fsw, fsd

FP Instructions in RISC-V

- Single-precision arithmetic
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s fadds.s f2,f4,f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d ^{e.g.,} fadd.d f2,f4,f6
- Single- and double-precision comparison
 - feq.s, flt.s, fle.s Result is 0 or 1 in integer destination register
 - feq.d, flt.d, fle.d Use beq, bne to branch on comparison result
- Branch on FP condition code true or false
 - B.cond