
EE-317
Computer Engineering

2024-2025

Arithmetic: Floating Point Operations

Jalal Nazar Abdulbaqi, Ph.D.

jalal.abdulbaqi@tu.edu.iq

Tikrit University
Electrical Engineering Department

2

Arithmetic

Outline
•Arithmetic on Floating Point

• Addition
• Multiplication

3

Arithmetic

Floating-Point Addition Example
• Example: 4-digit Decimal 9.999 × 101 + 1.610 × 10–1

1. Align decimal points → Shift
 number with smaller exponent 9.999 × 101 + 0.016 × 101

2. Add significands 9.999 × 101 + 0.016 × 101

= 10.015 × 101

3. Normalize result & check for
 over/underflow 1.0015 × 102

4. Round and renormalize if necessary 1.002 × 102

4

Arithmetic

Floating-Point Addition Example
• Example: 4-digit Binary 1.000two × 2–1 + –1.110two × 2–2

(0.5ten + –0.4375ten)

1. Align decimal points →
 Shift number with smaller exponent 1.000two × 2–1 + –0.111two × 2–1

2. Add significands 1.000two × 2–1 + –0.111two × 2–1
= 0.001two × 2–1

3. Normalize result & check for
 over/underflow 1.000two × 2–4

4. Round and renormalize if necessary 1.000two × 2–4 (no change)
= 0.0625ten

5

Arithmetic

Floating-Point Addition Algorithm
1. the binary point has to be aligned this means that the

significand of the smaller number is shifted to the right until
the decimal points are aligned.

2. then the addition of the significand takes place
3. the result needs to be normalized, which means the binary

point is shifted left and exponent increases.
4. the result needs to be truncated to available number of digits

and rounded off (add 1 to the last available digit if number to
the right is 5 or larger)

6

Arithmetic

Floating-Point Addition Algorithm

Arithmetic

Floating-
Point
Adder
Hardware

7

Step 1

Step 2

Step 3

Step 4

8

Arithmetic

Floating-Point Adder Hardware
• Much more complex than integer adder

• Doing it in one clock cycle would take too long
• Much longer than integer operations
• Slower clock would penalize all instructions

• Floating-Point adder usually takes several cycles
• Can be pipelined

9

Arithmetic

Floating-Point Multiplication Example
• Example: 4-digit Decimal 1.110 × 1010 × 9.200 × 10–5

1. Add exponents
 → For biased exponents, subtract
 bias from sum

10 + –5 = 5

2. Multiply significands 1.110 × 9.200 = 10.212
 10.212 × 105

3. Normalize result & check for
 over/underflow 1.0212 × 106

4. Round and renormalize if
 necessary 1.021 × 106

5. Determine sign of result from
 signs of operands 1.021 × 106

10

Arithmetic

Floating-Point Multiplication Example
• Example: 4-digit Binary 1.000two × 2–1 × –1.110two × 2–2

(0.5ten × –0.4375ten)
1. Add exponents
 → For biased exponents,
 subtract bias from sum

Unbiased: –1 + –2 = –3
Biased: (–1 + 127) + (–2 + 127)
 = –3 + 254 – 127 = –3 + 127

2. Multiply significands
1.000two × 1.110two = 1.110two
 1.110two × 2–3

3. Normalize result & check for
 over/underflow 1.110two × 2–3 (no change)

4. Round and renormalize if
 necessary 1.110two × 2–3 (no change)

5. Determine sign of result from
 signs of operands

–1.110two × 2–3

= –0.21875ten

11

Arithmetic

Floating-Point Multiplication Algorithm

12

Arithmetic

FP Arithmetic Hardware
• FP multiplier is of similar complexity to FP adder

• But uses a multiplier for significands instead of an adder

• FP arithmetic hardware usually does
• Addition, subtraction, multiplication, division, reciprocal, square-

root
• FP integer conversion

• Operations usually takes several cycles
• Can be pipelined

13

Arithmetic

Accurate Arithmetic
• During the preceding examples, arithmetic operations results

can have larger number of digits than what the registers can
hold, therefore,

• IEEE 754 always keeps two extra bits on the right called
guard and round.

Values 00-49 → round down, while 51-99 → round up

if values 50 → extra bit (sticky bit) is set to 1 if there are
nonzero bits to the right of the round bit

14

Arithmetic

Accurate Arithmetic
IEEE 754 has four rounding modes:

1.always round up (toward +∞),
2.always round down (toward −∞),
3.truncate, and
4.round to nearest even.

“Round to nearest even” determines what to do if the number is
exactly halfway in between. IEEE 754 says that if the least
significant bit (LSB) retained in a halfway case would be odd, add
one; if it’s even, truncate. In other words, choose the nearest even
number.

15

Arithmetic

Accurate Arithmetic
Example #1: round the following binary numbers to the nearest two bits fraction:

 0.11101 → 1.00 (round up)

 0.11011 → 0.11 (round down)

 0.11100 → tie-breaking case, the number in the halfway case

 → round to nearest even

 round up: 1.00 (Even)

 round down: 0.11 (Odd)

 then we round up (1.00) because it is even.

16

Arithmetic

Accurate Arithmetic
Example #2: round the following binary numbers to the nearest two bits fraction:

 0.10101 → 0.11 (round up)

 0.10011 → 0.10 (round down)

 0.10100 → tie-breaking case, the number in the halfway case

 → round to nearest even

 round up: 0.11 (Odd)

 round down: 0.10 (Even)

 then we round down (0.10) because it is even.

17

Accurate Arithmetic – Example 1

OP 3-digit significant Guard Round Sticky
8.76 × 101 + 1.47 × 102 0 0 0

Align 0.876 × 102 + 1.47 × 102 6 0 0
Add 2.3460 × 102 6 0 0

Norm 2.3460 × 102 6 0 0
Round 2.35 × 102 0 0 0

18

Accurate Arithmetic – Example 2

OP 3-digit significant Guard Round Sticky
5.01 × 10-1 + 1.34 × 102 0 0 0

Align 0.0050100×102 + 1.34×102 5 0 1
Add 1.3450 × 102 5 0 1

Norm 1.3450 × 102 5 0 1
Round 1.35 × 102 0 0 0

19

Arithmetic

FP Instructions in RISC-V
• Separate FP registers: f0, …, f31

• double-precision
• single-precision values stored in the lower 32 bits

• FP instructions operate only on FP registers
• Programs generally don’t do integer ops on FP data, or vice versa
• More registers with minimal code-size impact

• FP load and store instructions
• flw, fld
• fsw, fsd

20

Arithmetic

FP Instructions in RISC-V
• Single-precision arithmetic

• fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s

• Double-precision arithmetic
• fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d

• Single- and double-precision comparison
• feq.s, flt.s, fle.s

• feq.d, flt.d, fle.d

• Branch on FP condition code true or false
• B.cond

e.g.,
fadds.s f2,f4,f6

e.g.,
fadd.d f2,f4,f6

Result is 0 or 1 in integer destination register

Use beq, bne to branch on comparison result

