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Arithmetic

Outline
•Arithmetic on Floating Point

• Addition
• Multiplication
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Arithmetic

Floating-Point Addition Example
• Example: 4-digit Decimal 9.999 × 101 + 1.610 × 10–1

1. Align decimal points → Shift
    number with smaller exponent 9.999 × 101 + 0.016 × 101

2. Add significands 9.999 × 101 + 0.016 × 101

= 10.015 × 101

3. Normalize result & check for
    over/underflow 1.0015 × 102

4. Round and renormalize if necessary 1.002 × 102
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Arithmetic

Floating-Point Addition Example
• Example: 4-digit Binary 1.000two × 2–1 + –1.110two × 2–2 

(0.5ten + –0.4375ten)

1. Align decimal points → 
    Shift number with smaller exponent 1.000two × 2–1 + –0.111two × 2–1

2. Add significands 1.000two × 2–1 + –0.111two × 2–1 
= 0.001two × 2–1

3. Normalize result & check for
    over/underflow 1.000two × 2–4

4. Round and renormalize if necessary 1.000two × 2–4 (no change)
= 0.0625ten
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Arithmetic

Floating-Point Addition Algorithm
1. the binary point has to be aligned this means that the 

significand of the smaller number is shifted to the right until 
the decimal points are aligned. 

2. then the addition of the significand takes place 
3. the result needs to be normalized, which means the binary 

point is shifted left and exponent increases. 
4. the result needs to be truncated to available number of digits 

and rounded off (add 1 to the last available digit if number to 
the right is 5 or larger)
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Arithmetic

Floating-Point Addition Algorithm



Arithmetic

Floating-
Point 
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Step 1

Step 2

Step 3

Step 4
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Arithmetic

Floating-Point Adder Hardware
• Much more complex than integer adder

• Doing it in one clock cycle would take too long
• Much longer than integer operations
• Slower clock would penalize all instructions

• Floating-Point adder usually takes several cycles
• Can be pipelined
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Arithmetic

Floating-Point Multiplication Example
• Example: 4-digit Decimal 1.110 × 1010 × 9.200 × 10–5

1. Add exponents
    → For biased exponents, subtract
        bias from sum

10 + –5 = 5

2. Multiply significands 1.110 × 9.200 = 10.212  
  10.212 × 105

3. Normalize result & check for
     over/underflow 1.0212 × 106

4. Round and renormalize if  
     necessary 1.021 × 106

5. Determine sign of result from 
     signs of operands 1.021 × 106
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Arithmetic

Floating-Point Multiplication Example
• Example: 4-digit Binary 1.000two × 2–1 × –1.110two × 2–2 

(0.5ten × –0.4375ten)
1. Add exponents
    → For biased exponents,  
          subtract bias from sum

Unbiased: –1 + –2 = –3
Biased: (–1 + 127) + (–2 + 127)
     = –3 + 254 – 127 = –3 + 127

2. Multiply significands
1.000two × 1.110two = 1.110two 
  1.110two × 2–3

3. Normalize result & check for
     over/underflow 1.110two × 2–3 (no change) 

4. Round and renormalize if 
     necessary 1.110two × 2–3 (no change)

5. Determine sign of result from
     signs of operands

–1.110two × 2–3

= –0.21875ten
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Arithmetic

Floating-Point Multiplication Algorithm
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Arithmetic

FP Arithmetic Hardware
• FP multiplier is of similar complexity to FP adder

• But uses a multiplier for significands instead of an adder

• FP arithmetic hardware usually does
• Addition, subtraction, multiplication, division, reciprocal, square-

root
• FP  integer conversion

• Operations usually takes several cycles
• Can be pipelined
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Arithmetic

Accurate Arithmetic
• During the preceding examples, arithmetic operations results 

can have larger number of digits than what the registers can 
hold, therefore,

• IEEE 754 always keeps two extra bits on the right called 
guard and round.

Values 00-49 →  round down, while 51-99 → round up

if values 50 → extra bit (sticky bit) is set to 1 if there are 
nonzero bits to the right of the round bit
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Arithmetic

Accurate Arithmetic
IEEE 754 has four rounding modes: 

1.always round up (toward +∞), 
2.always round down (toward −∞), 
3.truncate, and 
4.round to nearest even. 

“Round to nearest even” determines what to do if the number is 
exactly halfway in between. IEEE 754 says that if the least 
significant bit (LSB) retained in a halfway case would be odd, add 
one; if it’s even, truncate. In other words, choose the nearest even 
number. 
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Arithmetic

Accurate Arithmetic
Example #1: round the following binary numbers to the nearest two bits fraction:

   0.11101 → 1.00 (round up)

   0.11011 → 0.11 (round down)

   0.11100 → tie-breaking case, the number in the halfway case 

                   → round to nearest even

    round up:      1.00  (Even)

    round down: 0.11  (Odd)

    then we round up (1.00) because it is even.
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Arithmetic

Accurate Arithmetic
Example #2: round the following binary numbers to the nearest two bits fraction:

   0.10101 → 0.11 (round up)

   0.10011 → 0.10 (round down)

   0.10100 → tie-breaking case, the number in the halfway case 

                   → round to nearest even

    round up:      0.11  (Odd)

    round down: 0.10  (Even)

    then we round down (0.10) because it is even.
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Accurate Arithmetic – Example 1

OP 3-digit significant Guard Round Sticky
8.76 × 101 + 1.47 × 102 0 0 0

Align 0.876 × 102 + 1.47 × 102 6 0 0
Add 2.3460 × 102 6 0 0

Norm 2.3460 × 102 6 0 0
Round 2.35 × 102 0 0 0
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Accurate Arithmetic – Example 2

OP 3-digit significant Guard Round Sticky
5.01 × 10-1 + 1.34 × 102 0 0 0

Align 0.0050100×102 + 1.34×102 5 0 1
Add 1.3450 × 102 5 0 1

Norm 1.3450 × 102 5 0 1
Round 1.35 × 102 0 0 0
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Arithmetic

FP Instructions in RISC-V
• Separate FP registers: f0, …, f31

• double-precision
• single-precision values stored in the lower 32 bits

• FP instructions operate only on FP registers
• Programs generally don’t do integer ops on FP data, or vice versa
• More registers with minimal code-size impact

• FP load and store instructions
• flw, fld
• fsw, fsd
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Arithmetic

FP Instructions in RISC-V
• Single-precision arithmetic

• fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s

• Double-precision arithmetic
• fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d

• Single- and double-precision comparison
• feq.s, flt.s, fle.s

• feq.d, flt.d, fle.d

• Branch on FP condition code true or false
• B.cond

e.g.,
fadds.s f2,f4,f6

e.g., 
fadd.d f2,f4,f6

Result is 0 or 1 in integer destination register

Use beq, bne to branch on comparison result


