
EE-307
Computer Engineering

2024-2025

Instructions:
 Translating and Starting a Program

Jalal Nazar Abdulbaqi, Ph.D.

jalal.abdulbaqi@tu.edu.iq

Tikrit University
Electrical Engineering Department

Instructions

Outline
• Translation and Startup

• Files Extension

• Producing an Object Module

• Linking Object Modules

Instructions

Translation and Startup
Many compilers produce object
modules directly

Static linking

4

Instructions

Translation and Startup

Compiler Transfer the high-level language (HLL) program (e.g.,
C/C++) into assembly language program.

Assembler Transfer the assembly language program into the
machine language (Object File).

Linker Combine multiple object files (the program and its
libraries) into one executable file.

Loader Place the executable file into the memory for execution
by the processor.

Instructions

Files Extension

Files Types UNIX MS-DOS
C code .c .C

Assembly .s .ASM
Object file .o .OBJ

Statically linked library .a .LIB

Dynamically linked library .so .DLL
Executable file .out .EXE

6

Instructions

Producing an Object Module
Provides information for building a complete program from
the pieces

Header: described contents of object module

Text segment: translated instructions

Static data segment: data allocated for the life of the program

Relocation info: for contents that depend on absolute location of
loaded program

Symbol table: global definitions and external refs

Debug info: for associating with source code

7

Instructions

Linking Object Modules
• Produces an executable image

1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external references

• Could leave location dependencies for fixing by a relocating
loader

• But with virtual memory, no need to do this
• Program can be loaded into absolute location in virtual memory

space

8

Instructions

Loading a Program
• Load from image file on disk into memory

1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
• Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including sp, fp, gp)

6. Jump to startup routine
• Copies arguments to x10, … and calls main

• When main returns, do exit syscall

9

Instructions

Concluding Remarks
• Two stored-program computer principles:

• the use of instructions that are indistinguishable from numbers

• the use of alterable memory for programs

• number have no inherent type:
• A given bit pattern can represent an integer number or a string or

a color or even an instruction.

• It is the program that determines the type of data.

10

Instructions

Concluding Remarks
Three design principles:

1.Simplicity favors regularity
always requiring three register operands in arithmetic instructions

keeping the register fields in the same place in all instruction
formats

2.Smaller is faster
RISC-V has 32 registers rather than many more

3.Good design demands good compromises
keeping all instructions the same length

11

Instructions

Concluding Remarks
• RISC-V instructions categories are associated with constructs

that appear in HLL programming languages:
• Arithmetic instructions correspond to the operations found in

assignment statements.
• Transfer instructions are most likely to occur when dealing with

data structures like arrays or structures.
• Conditional branches are used in if statements and in loops.
• Unconditional branches are used in procedure calls and returns

and for case/switch statements.

12

Instructions

Concluding Remarks

