

وزارة التعليم العالي والبحث العلمي جامعة تكريت - كلية الهندسة القسم المدني

قسم الهندسة المدنية - مواد الامتحان التنافسي للعام الدراسي 2025-2026 قسم الهندسة المدنية - مواد الامتحان التنافسي للعام الدراسي 2025-2026

الماجستير : انشاءات		
الدرجة	المادة الدراسية	ت
15 %	مقاومة مواد	.1
15 %	تكنولوجيا الخرسانة	.2
15 %	خرسانة مسلحة	.3
15 %	تحليل منشآت	.4
15 %	تصاميم خرسانية	.5
15 %	تصاميم حديد	.6
10 %	تحليلات هندسية	.7

Competitive Exam - Post-Graduate (MSc Program) – 2025-2026		
Strength of Materials- By Ferdinand L. Singer		
Chapter	Subject	Remarks
<u>One</u>	Simple Stress	
	- Normal Stress	
	- Shearing Stress	
	- Bearing Stress	
	- Thin-Walled Cylinders	
<u>Two</u>	Simple Strain	
	- Hooke's Law: Axial Deformation	
	- Poisson's Ratio: Biaxial And Triaxial Deformations	
<u>Three</u>	Ch.3 Torsion	
<u>Four</u>	Shear And Moment Diagram of Beams	
<u>Five</u>	Stress in Beams	
	- Flexural Stress in Beams	
	- Shear Stress in Beams	
	- Design For Flexure And Shear	
<u>Nine</u>	Combined Stresses	
	- Mohr's Circle	
<u>Eleven</u>	Columns	
	- Critical Load	
	- Long Columns By Euler's Formula	

Competitive Exam - Post-Graduate (MSc Program) - 2025-2026		
مؤيد نوري الخلف – هناء عبد يوسف By -تكنلوجيا الخرسانة		
Chapter	Subject	Remarks
<u>One</u>	<u>Title</u>	
	- Portland Cement	
	- Physical and chemical properties of cement	
	- Hydration of cement	
	- Tests of cement	
	- Types of cement	
<u>Three</u>	Concrete Aggregate	
	- Classification of aggregate	
	- Properties of aggregate	
	- Deleterious Substances of aggregate	
	- Sieve analysis and Maximum aggregate size	
	- Aggregates testes	
Four	<u>Fresh concrete</u>	
	- Components of Fresh Concrete	
	- Consistency and workability	
	 Segregation and bleeding 	
	 Mixing and compaction of concrete 	
<u>Five</u>	Strength of concrete	
	- Types of Concrete Strength	
	 Factors Affecting of concrete strength 	
	- Tests of hardened concrete	
<u>Six</u>	Elasticity, shrinkage, and creep in concrete	
<u>Eight</u>	Concrete Mix Design	

Competitive Exam - Post-Graduate (MSc Program) – 2025-2026			
Reinforced Concrete			
Design of concrete structure by Arthur H. Nilson			
Chapter	Subject	Remarks	
<u>One &</u>	Introduction-		
<u>Two</u>	- Mechanical Properties of concrete		
	- Concrete materials and its properties		
<u>Three</u>	Reinforcement details		
	- Loading using ACI-Code.		
	- Flexural Analysis and Design of Beams		
	- Ultimate strength method (Introduction)		
	- Singly Reinforced Rectangular Beams (Analysis and design)		
	- ACI- Design requirement		
	- Doubly Reinforced Rectangular Beams (Analysis and		
	Design)		
	- T-Beams (Analysis and Design)		
Four	Shear and Diagonal Tension in Beams		
	- ACI Code Provisions for Shear Design		
	- Design of Web Reinforcement		
<u>Seven</u>	Analysis and Design for Torsion		
	- ACI-Code Provisions for Torsion design		
<u>Eight</u>	Design of Short Columns		
	- Short columns subject to Axial Load and Bending		
<u>Nine</u>	Slender Columns		
<u>Eleven</u>	Indeterminate Beams		
	- Analysis of Indeterminate Beams (Continuous Beams)		
	- Design of Indeterminate Beams (Continuous Beams)		
<u>Twelve</u>	Analysis and Design of One-Way Slabs		

Competitive Exam - Post-Graduate (MSc Program) – 2025-2026				
	Structures Analysis- By R. C. Hibbeler			
Chapter	Subject	Remarks		
	Analysis of Statically Determinate Structures			
<u>Two</u>	- Determinacy and Stability			
	- Applications of the Equations of Equilibrium			
	Analysis of Statically Determinate Trusses			
	- Classification of Coplanar Trusses			
<u>Three</u>	- The Method of Joints			
	- Zero-Force Members			
	- The Method of Sections			
	Internal Loadings Developed in Structural Members			
	- Internal Loadings at a Specified Point			
Four	- Shear and Moment Functions			
	- Shear and Moment Diagrams for a Beam			
	- Shear and Moment Diagrams for a Frame			
	Deflections Using Energy Methods			
	- Principle of Virtual Work			
<u>Eight</u>	- Method of Virtual Work: Trusses			
	- Method of Virtual Work: Beams			
	- Method of Virtual Work: Frames			
	Displacement Method for Analysis: Slope-Deflection Equations			
	- Displacement Method of Analysis: General Procedures			
Ten	- Slope-Deflection Equations			
1011	- Analysis of Beams			
	- Analysis of Frames: No Sidesway			
	- Analysis of Frames: Sidesway			
	Displacement Method of Analysis: Moment Distribution			
<u>Eleven</u>	- General Principles and Definitions			
	- Moment Distribution for Beams			
	- Stiffness-Factor Modifications			
	- Moment Distribution for Frames: No Sidesway			
	- Moment Distribution for Frames: Sidesway			

Competitive Exam - Post-Graduate (MSc Program) - 2025-2026			
Design of Concrete Structures- By Arthur H. Nilson 14th edition			
Chapter	Subject	Remarks	
<u>One</u>	- Design and analysis of Beams.		
	- Design and Analysis of Indeterminate Beams		
	and Frames.		
<u>Two</u>	- Design of Two-Way Slab by ACI method 3.		
	- Design of Flat Slab by Direct Design Method.		
	- Design of One-Way Ribbed Slab.		
	- Design of Circular Slab.		
<u>Three</u>	- Analysis of Concrete Beam by Plastic Method		
	(Plastic Hinges in Beams).		
	- Analysis of Concrete Slab by yield Lines Theory.		
Four	- Behaviour of Presresssed concrete beams.		
	- Analysis of prestressed concrete beams.		

وزارة التعليم العالي والبحث العلمي جامعة تكريت - كلية الهندسة القسم المدني

Competitive Exam - Post-Graduate (MSc Program) - 2025-2026 Steel Design- By William T. Segui

Structural Steel Design- By Jack C. McCormack & Stephen F. Csernal

Concepts in Structural Steel Design (William T. Segui) Design Philosophies LRFD Safety Factors and Load Combinations for ASD Steel Construction Manual Tension Members (William T. Segui) Three Tensile Strength Effective Area, Staggered Fasteners Block Shear Compression Members (William T. Segui) Four Column Theory AISC Requirements, Local Stability, Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) Introduction, Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) Columns) (Jack C. McCormac) Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) Types of Bolts Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections Sizes of Bolt Holes	Structural Steel Design- By Jack C. McCormack & Stephen F. Csernak		
- Design Philosophies - LRFD - Safety Factors and Load Combinations for ASD - Steel Construction Manual Tension Members (William T. Segui) - Tensile Strength - Effective Area, Staggered Fasteners - Block Shear Compression Members (William T. Segui) - Column Theory - AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) Nine - Introduction, - Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam-Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes	Chapter	Subject	Remarks
Two - LRFD - Safety Factors and Load Combinations for ASD - Steel Construction Manual Tension Members (William T. Segui) - Tensile Strength - Effective Area, Staggered Fasteners - Block Shear Compression Members (William T. Segui) - Column Theory - AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes		Concepts in Structural Steel Design (William T. Segui)	
- Safety Factors and Load Combinations for ASD - Steel Construction Manual Tension Members (William T. Segui) - Tensile Strength - Effective Area, Staggered Fasteners - Block Shear Compression Members (William T. Segui) - Column Theory - AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior — Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam-Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes	_	- Design Philosophies	
- Steel Construction Manual Tension Members (William T. Segui) - Tensile Strength - Effective Area, Staggered Fasteners - Block Shear Compression Members (William T. Segui) - Column Theory - AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior — Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes	Two	- LRFD	
Three Tension Members (William T. Segui) Tensile Strength Effective Area, Staggered Fasteners Block Shear Compression Members (William T. Segui) Column Theory AlSC Requirements, Local Stability, Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) Introduction, Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) Columns) (Jack C. McCormac) Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) Twelve Twelve Twelve Tippes of Bolts Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections Sizes of Bolt Holes		- Safety Factors and Load Combinations for ASD	
Three - Tensile Strength - Effective Area, Staggered Fasteners - Block Shear Compression Members (William T. Segui) - Column Theory - AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior — Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam-Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes		- Steel Construction Manual	
- Effective Area, Staggered Fasteners - Block Shear Compression Members (William T. Segui) - Column Theory - AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes		Tension Members (William T. Segui)	
Four Four Compression Members (William T. Segui) Column Theory AISC Requirements, Local Stability, Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) Introduction, Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam-Columns) (Jack C. McCormac) Cocurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) Twelve Twelve Sizes of Bolts Sizes of Bolt Holes	Three	- Tensile Strength	
Four Compression Members (William T. Segui) Column Theory AISC Requirements, Local Stability, Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) Introduction, Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) Columns) (Jack C. McCormac) Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) Twelve Twelve Sizes of Bolts Sizes of Bolt Holes			
Four - Column Theory - AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes			
- AISC Requirements, Local Stability, - Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes			
- Design & More on Effective Length Design of Beams for Moments (Jack C. McCormac) - Introduction, - Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes	Four	, · · · · · · · · · · · · · · · · · · ·	
Nine Design of Beams for Moments (Jack C. McCormac) Introduction, Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) Twelve Twelve Twelve Sizes of Bolts Sizes of Bolt Holes		1 ,	
 Nine Introduction, Yielding Behavior—Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam—Columns) (Jack C. McCormac) Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) Types of Bolts Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections Sizes of Bolt Holes 		<u> </u>	
- Yielding Behavior — Full Plastic Moment, Zone 1, Design of Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam— Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes			
Beams, Zone 1, Lateral Support of Beams Members Subject to Bending and Axial Tension (Beam– Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes	<u>Nine</u>		
Members Subject to Bending and Axial Tension (Beam-Columns) (Jack C. McCormac) - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes			
Eleven - Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes			
- Occurrence, First-Order and Second-Order Moments for Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes			
Members Subject to Axial Compression and Bending - Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes	Eleven		
- Direct Analysis Method (DM) & Effective Length Method (ELM) Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes	Lieven		
Twelve Bolted Connections (Jack C. McCormac) - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes		, ,	
Twelve - Types of Bolts - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes		` ' '	
Twelve - Snug-Tight, Pretensioned, and Slip-Critical Bolts Connections - Sizes of Bolt Holes			
- Sizes of Bolt Holes	<u>Twelve</u>	" 1	
- Load Transfer and Types of Joints, Failure of Bolted Joints.		- Load Transfer and Types of Joints, Failure of Bolted Joints,	

وزارة التعليم العالي والبحث العلمي جامعة تكريت - كلية الهندسة المدني القسم المدني

Competitive Exam - Post-Graduate (MSc Program) - 2025-2026 ADVANCED ENGINEERING MATHEMATICS By C. RAY WYLIE & LOUIS C. BARRETT Remarks Chapter Subject Ordinary Differential Equations of the First Order Classification of Differential Equations Solutions of Differential Equations Separable First-Order Equations <u>One</u> Homogeneous First-Order Equations **Exact First-Order Equations** Linear First-Order Equations Special First-Order Equations **Orthogonal Trajectories Linear Differential Equations** Homogeneous Second-Order Equations with **Constant Coefficients** Solutions of Nonhomogeneous Equations **Two** Nonhomogeneous Equations with Constant Coefficients Homogeneous Equations of Higher Order Variation of Parameters and Reduction of Order Simultaneous Linear Differential Equations Solutions, Consistency, and Equivalence of Linear Differential Systems Four Fundamental Concepts and Theorems Concerning First-Order Systems Complementary Functions and Particular Integrals of Linear Differential Systems **Partial Differential Equations** Introduction The Derivation of Equations Nine Characteristics and the Classification of Partial **Differential Equations**

Separation of Variables